1

Alpha Prime Supps LEGACY Series Pre-Workout and Pump

This is how a legacy begins.

Alpha Prime Supps may be a relatively new supplement brand, but they’re a serious one. Their energy and drive was put on display earlier in February of 2021, when Ben Kane of PricePlow flew down to Florida to see the promising young team in search of a new frontier in the supplement industry:

Subscribe to PricePlow on YouTube!

From racing to sports nutrition: Meet Caesar Bacarella

The story begins with Caesar Bacarella, a professional race car driver who competes in the NASCAR Xfinity Series, driving for Alpha Prime Racing. Alpha Prime runs a fantastic apparel business, but as a top-tier athlete, Caesar found himself amidst the world of sports supplements, looking for an extra edge in his health, fitness, and focus.

Alpha Prime Supps Legacy Series

Are you ready for your legacy? After a year of hard work, Alpha Prime Supps has released their Legacy Series Pre-Workout and Pump Supplements

Caesar instantly fell in love with the world of supplements, and before you knew it, Alpha Prime began dabbling into supplements. Caesar’s likable enthusiasm is downright infectious, and he was able to enlist Brian “Ike” Ikalina as his VP (explained in Episode #043 of the PricePlow Podcast). The duo began the Alpha Prime Supps, and with some incredibly impactful supplements, are well on their way to a new legacy.

The Alpha Prime Legacy Starts here

When it comes to the sports nutrition niche of the supplement industry, there’s generally one way to begin your legacy: with an epic pre workout stack. Alpha Prime has done just that, with their new Legacy Series, which includes the Legacy Series Pre and Legacy Series Pump. Inside, we’re treated to some incredibly powerful and well-dosed formulas, with a brand new innovation in the Pump formula.

A brand with drive

AP goes big on a couple of ingredients, so if you’re ready to feel a sick pump and crystal clear energy, you’re ready for the Legacy Series. It’s all covered below — but first check the availability on PricePlow and sign up for our Alpha Prime alerts — we have a lot more coming from the hot upstart:

Alpha Prime Supps Legacy Series Pre-Workout – Deals and Price Drop Alerts

Get Price Alerts

No spam, no scams.

Disclosure: PricePlow relies on pricing from stores with which we have a business relationship. We work hard to keep pricing current, but you may find a better offer.

Posts are sponsored in part by the retailers and/or brands listed on this page.

Alpha Prime Supps Legacy Series Pump – Deals and Price Drop Alerts

Get Price Alerts

No spam, no scams.

Disclosure: PricePlow relies on pricing from stores with which we have a business relationship. We work hard to keep pricing current, but you may find a better offer.

Posts are sponsored in part by the retailers and/or brands listed on this page.

Alpha Prime Supps Legacy Series Pump – Deals and Price Drop Alerts

Get Price Alerts

No spam, no scams.

Disclosure: PricePlow relies on pricing from stores with which we have a business relationship. We work hard to keep pricing current, but you may find a better offer.

Posts are sponsored in part by the retailers and/or brands listed on this page.

Alpha Prime Supps Legacy Series Pump – Deals and Price Drop Alerts

Get Price Alerts

No spam, no scams.

Disclosure: PricePlow relies on pricing from stores with which we have a business relationship. We work hard to keep pricing current, but you may find a better offer.

Posts are sponsored in part by the retailers and/or brands listed on this page.

References

  1. Hill, CA et al.; Amino Acids; “Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity ;” February 2007; https://jissn.biomedcentral.com/articles/10.1186/1550-2783-6-7
  2. Trexler, E.T., Smith-Ryan, A.E., Stout, J.R. et al.; “International society of sports nutrition position stand: Beta-Alanine.”; J Int Soc Sports Nutr 12, 30 (2015); https://jissn.biomedcentral.com/articles/10.1186/s12970-015-0090-y
  3. Hobson, R M et al. “Effects of β-alanine supplementation on exercise performance: a meta-analysis.” Amino acids vol. 43,1 (2012): 25-37. doi:10.1007/s00726-011-1200-z; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374095/
  4. Saunders, Bryan, et al. “β-Alanine Supplementation to Improve Exercise Capacity and Performance: A Systematic Review and Meta-Analysis.” British Journal of Sports Medicine, vol. 51, no. 8, 18 Oct. 2016, pp. 658–669; https://bjsm.bmj.com/content/51/8/658.long
  5. Dolan, Eimear, et al. “A Systematic Risk Assessment and Meta-Analysis on the Use of Oral β-Alanine Supplementation.” Advances in Nutrition, vol. 10, no. 3, 13 Apr. 2019, pp. 452–463, 10.1093/advances/nmy115; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520041/
  6. Cholewa, Jason M et al. “Effects of betaine on body composition, performance, and homocysteine thiolactone.” Journal of the International Society of Sports Nutrition vol. 10,1 39. 22 Aug. 2013, doi:10.1186/1550-2783-10-39; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3844502/
  7. Cholewa, Jason M., et al. “Effects of Betaine on Performance and Body Composition: A Review of Recent Findings and Potential Mechanisms.” Amino Acids, vol. 46, no. 8, 24 Apr. 2014, pp. 1785–1793, 10.1007/s00726-014-1748-5; https://pubmed.ncbi.nlm.nih.gov/24760587/
  8. Boel De Paepe; “Osmolytes as Mediators of the Muscle Tissue’s Responses to Inflammation: Emerging Regulators of Myositis with Therapeutic Potential”; EMJ Rheumatol. 2017;4undefined:83-89; https://www.emjreviews.com/rheumatology/article/osmolytes-as-mediators-of-the-muscle-tissues-responses-to-inflammation-emerging-regulators-of-myositis-with-therapeutic-potential/
  9. Olthof, M. R., & Verhoef, P. (2005). Effects of betaine intake on plasma homocysteine concentrations and consequences for health. Current drug metabolism, 6(1), 15-22; Retrieved from https://pubmed.ncbi.nlm.nih.gov/15720203
  10. Roti, M; “Homocysteine, Lipid and Glucose Responses to Betaine Supplementation During Running in the Heat”; Medicine & Science in Sports & Exercise: May 2003 – Volume 35 – Issue 5 – p S271; https://journals.lww.com/acsm-msse/Fulltext/2003/05001/HOMOCYSTEINE,_LIPID_AND_GLUCOSE_RESPONSES_TO.1501.aspx
  11. Armstrong, Lawrence E, et al. “Influence of Betaine Consumption on Strenuous Running and Sprinting in a Hot Environment.” Journal of Strength and Conditioning Research, vol. 22, no. 3, May 2008, pp. 851–860, 10.1519/jsc.0b013e31816a6efb; https://pubmed.ncbi.nlm.nih.gov/18438230
  12. Hoffman, Jay R, et al. “Effect of Betaine Supplementation on Power Performance and Fatigue.” Journal of the International Society of Sports Nutrition, vol. 6, no. 1, 27 Feb. 2009, 10.1186/1550-2783-6-7; https://jissn.biomedcentral.com/articles/10.1186/1550-2783-6-7
  13. Lee, Elaine C, et al. “Ergogenic Effects of Betaine Supplementation on Strength and Power Performance.” Journal of the International Society of Sports Nutrition, vol. 7, no. 1, 2010, p. 27, 10.1186/1550-2783-7-27; https://jissn.biomedcentral.com/articles/10.1186/1550-2783-7-27
  14. Trepanowski, John F, et al. “The Effects of Chronic Betaine Supplementation on Exercise Performance, Skeletal Muscle Oxygen Saturation and Associated Biochemical Parameters in Resistance Trained Men.” Journal of Strength and Conditioning Research, vol. 25, no. 12, Dec. 2011, pp. 3461–3471, 10.1519/jsc.0b013e318217d48d; https://pubmed.ncbi.nlm.nih.gov/22080324/
  15. Pryor, J Luke, et al. “Effect of Betaine Supplementation on Cycling Sprint Performance.” Journal of the International Society of Sports Nutrition, vol. 9, no. 1, 3 Apr. 2012, 10.1186/1550-2783-9-12; https://jissn.biomedcentral.com/articles/10.1186/1550-2783-9-12
  16. Jason Michael Cholewa, et al; “The Effects of Chronic Betaine Supplementation on Body Composition and Performance in Collegiate Females: a Double-Blind, Randomized, Placebo Controlled Trial”; Journal of the International Society of Sports Nutrition; BioMed Central; 31 July 2018; https://jissn.biomedcentral.com/articles/10.1186/s12970-018-0243-x
  17. Gao, Xiang et al.; “Effect of Betaine on Reducing Body Fat—A Systematic Review and Meta-Analysis of Randomized Controlled Trials.”; Nutrients 2019, 11, 2480; https://www.mdpi.com/2072-6643/11/10/2480
  18. Morrison, L. M. “Results of Betaine Treatment of Atherosclerosis.” The American Journal of Digestive Diseases, vol. 19, no. 12, 1 Dec. 1952, pp. 381–384, 10.1007/BF02881126; https://pubmed.ncbi.nlm.nih.gov/12996486/
  19. Craig, Stuart AS. “Betaine in Human Nutrition.” The American Journal of Clinical Nutrition, vol. 80, no. 3, 1 Sept. 2004, pp. 539–549, 10.1093/ajcn/80.3.539; https://academic.oup.com/ajcn/article/80/3/539/4690529
  20. Iqbal, O., Fareed, D., Cunanan, J., Hoppensteadt, D., Messadek, J., Baltasar, F., & Fareed, J. (2006). Betaine induced release of tissue factor pathway inhibitor and nitric oxide: implications in the management of cardiovascular disease. The FASEB Journal, 20(4), A655; https://www.fasebj.org/cgi/content/meeting_abstract/20/4/A655-a
  21. Caldas, Teresa, et al. “Thermoprotection by Glycine Betaine and Choline.” Microbiology, vol. 145, no. 9, 1 Sept. 1999, pp. 2543–2548, 10.1099/00221287-145-9-2543; https://pubmed.ncbi.nlm.nih.gov/10517607/
  22. Lundberg, Jon O., and Mirco Govoni. “Inorganic Nitrate Is a Possible Source for Systemic Generation of Nitric Oxide.” Free Radical Biology & Medicine, vol. 37, no. 3, 1 Aug. 2004, pp. 395–400, 10.1016/j.freeradbiomed.2004.04.027. https://pubmed.ncbi.nlm.nih.gov/15223073/
  23. Qu, X. M., et al. “From Nitrate to Nitric Oxide: The Role of Salivary Glands and Oral Bacteria.” Journal of Dental Research, vol. 95, no. 13, 1 Dec. 2016, pp. 1452–1456, 10.1177/0022034516673019; https://pubmed.ncbi.nlm.nih.gov/27872324/
  24. Eisenbrand, G., et al. “Nitrate and Nitrite in Saliva.” Oncology, vol. 37, no. 4, 1980, pp. 227–231, 10.1159/000225441; https://pubmed.ncbi.nlm.nih.gov/7443155/
  25. Hoon, Matthew W., et al. “The Effect of Nitrate Supplementation on Exercise Performance in Healthy Individuals: A Systematic Review and Meta-Analysis.” International Journal of Sport Nutrition and Exercise Metabolism, vol. 23, no. 5, Oct. 2013, pp. 522–532, 10.1123/ijsnem.23.5.522. https://pubmed.ncbi.nlm.nih.gov/23580439/
  26. Larsen, F; “Effects of dietary nitrate on oxygen cost during exercise”; Department of Physiology and Pharmacology, Karolinska Institutet; 2007; https://pubmed.ncbi.nlm.nih.gov/17635415/
  27. Lansley, K; “Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study”; School of Sport and Health Sciences, Univ. of Exeter; 2011; https://journals.physiology.org/doi/full/10.1152/japplphysiol.01070.2010
  28. Bailey, S; “Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans”; School of Sport and Health Sciences, Univ. of Exeter; 2009; https://journals.physiology.org/doi/full/10.1152/japplphysiol.00722.2009
  29. Bescos, R; “Acute administration of inorganic nitrate reduces VO(2peak) in endurance athletes”; National Institute of Physical Education-Barcelona, University of Barcelona; 2011; https://pubmed.ncbi.nlm.nih.gov/21407132/
  30. Fulford, J; “Influence of dietary nitrate supplementation on human skeletal muscle metabolism and force production during maximum voluntary contractions”; NIHR Exeter Clinical Research Facility, University of Exeter Medical School; 2013; https://pubmed.ncbi.nlm.nih.gov/23354414/
  31. Bailey, S; “Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans”; School of Sport and Health Sciences, University of Exeter; 2010; https://journals.physiology.org/doi/full/10.1152/japplphysiol.00046.2010
  32. Lundberg, J; “The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics”; Department of Physiology and Pharmacology, Karolinska Institute; 2008; https://www.nature.com/articles/nrd2466
  33. Larsen, F; “Dietary inorganic nitrate improves mitochondrial efficiency in humans”; Department of Physiology and Pharmacology, Karolinska Institutet; 2011; https://www.cell.com/cell-metabolism/fulltext/S1550-4131(11)00005-2
  34. Mahoney, DE., et al. 2018. “Understanding D-Ribose and Mitochondrial Function.” Advances in Bioscience and Clinical Medicine vol. 6,1 (2018): 1-5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959283/
  35. Jones, Kathryn, and Yasmine Probst. “Role of Dietary Modification in Alleviating Chronic Fatigue Syndrome Symptoms: A Systematic Review.” Australian and New Zealand Journal of Public Health, vol. 41, no. 4, 14 June 2017, pp. 338–344, 10.1111/1753-6405.12670; https://pubmed.ncbi.nlm.nih.gov/28616881/
  36. Hellsten, Y., et al. “Effect of Ribose Supplementation on Resynthesis of Adenine Nucleotides after Intense Intermittent Training in Humans.” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 286, no. 1, Jan. 2004, pp. R182–R188, 10.1152/ajpregu.00286.2003; https://journals.physiology.org/doi/full/10.1152/ajpregu.00286.2003
  37. Wilson, Jacob M, et al. “Effects of Oral Adenosine-5′-Triphosphate Supplementation on Athletic Performance, Skeletal Muscle Hypertrophy and Recovery in Resistance-Trained Men.” Nutrition & Metabolism, vol. 10, no. 1, 2013, p. 57; 10.1186/1743-7075-10-57; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849389/
  38. Rathmacher, John A, et al. “Adenosine-5′-Triphosphate (ATP) Supplementation Improves Low Peak Muscle Torque and Torque Fatigue during Repeated High Intensity Exercise Sets.” Journal of the International Society of Sports Nutrition, vol. 9, 9 Oct. 2012, p. 48, 10.1186/1550-2783-9-48; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483284/
  39. Goldstein, E.R., Ziegenfuss, T., Kalman, D. et al.; “International society of sports nutrition position stand: caffeine and performance”; J Int Soc Sports Nutr 7, 5 (2010); https://link.springer.com/article/10.1186/1550-2783-7-5
  40. Norager, C. B., et al. “Metabolic Effects of Caffeine Ingestion and Physical Work in 75-Year Old Citizens. A Randomized, Double-Blind, Placebo-Controlled, Cross-over Study.” Clinical Endocrinology, vol. 65, no. 2, Aug. 2006, pp. 223–228, 10.1111/j.1365-2265.2006.02579.x; https://pubmed.ncbi.nlm.nih.gov/16886964/
  41. Astrup, A, et al. “Caffeine: A Double-Blind, Placebo-Controlled Study of Its Thermogenic, Metabolic, and Cardiovascular Effects in Healthy Volunteers.” The American Journal of Clinical Nutrition, vol. 51, no. 5, 1 May 1990, pp. 759–767, 10.1093/ajcn/51.5.759; https://academic.oup.com/ajcn/article/51/5/759/4695347
  42. Keijzers, Gerben B., et al. “Caffeine Can Decrease Insulin Sensitivity in Humans.” Diabetes Care, vol. 25, no. 2, 1 Feb. 2002, pp. 364–369; https://care.diabetesjournals.org/content/25/2/364.long
  43. Zeisel, Steven H, and Kerry-Ann da Costa. “Choline: An Essential Nutrient for Public Health.” Nutrition Reviews, vol. 67, no. 11, Nov. 2009, pp. 615–623, 10.1111/j.1753-4887.2009.00246.x; https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC2782876/
  44. Purves, Dale, et al. “Acetylcholine.” Nih.gov, Sinauer Associates, 2013. https://www.ncbi.nlm.nih.gov/books/NBK11143/
  45. Jones, Barbara E. “From Waking to Sleeping: Neuronal and Chemical Substrates.” Trends in Pharmacological Sciences, vol. 26, no. 11, Nov. 2005, pp. 578–586, 10.1016/j.tips.2005.09.009. https://pubmed.ncbi.nlm.nih.gov/16183137
  46. Hasselmo, Michael E. “The Role of Acetylcholine in Learning and Memory.” Current Opinion in Neurobiology, vol. 16, no. 6, Dec. 2006, pp. 710–715, 10.1016/j.conb.2006.09.002. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659740/
  47. Secades, JJ; “Citicoline: pharmacological and clinical review, 2016 update;” Rev Neurol; 2017; https://www.researchgate.net/profile/Julio_Secades/publication/317167480_Citicoline_pharmacological_and_clinical_review_2016_update/links/59280785a6fdcc444353790e/Citicoline-pharmacological-and-clinical-review-2016-update.pdf
  48. Martínez-Pinilla E, Oñatibia-Astibia A, Franco R. “The relevance of theobromine for the beneficial effects of cocoa consumption”; Front Pharmacol. 2015;6:30; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335269/
  49. Baggott, M, et. al; “Psychopharmacology of theobromine in healthy volunteers”; Psychopharmacology; February 2013; http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672386/
  50. Baggott, Matthew J., et al. “Psychopharmacology of Theobromine in Healthy Volunteers.” Psychopharmacology, vol. 228, no. 1, 19 Feb. 2013, pp. 109–118, 10.1007/s00213-013-3021-0; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672386/
  51. Murbach, TS et al; “A Toxicological Evaluation of Methylliberine (Dynamine)”; Journal of Toxicology; 2019; https://www.hindawi.com/journals/jt/2019/4981420/
  52. Roberto, Mike; “Dynamine: A Neuroactivating “Stimulant” by Compound Solutions”; The PricePlow Blog; Feb. 5, 2018; https://blog.priceplow.com/supplement-ingredients/dynamine
  53. Roberto, Mike; “Dynamine Achieves GRAS Status With Several New Safety Studies!”; The PricePlow Blog; July 5, 2019; https://blog.priceplow.com/dynamine/gras
  54. VanDusseldorp, TA et al; “Effect of Dynamine With and Without TeaCrine Over Four Weeks of Continuous Use on Cardiovascular Function and Psychometric Parameters of Healthy Males and Females”; Nutrients; 2020; https://www.researchgate.net/publication/339655396_Safety_of_Short-Term_Supplementation_with_Methylliberine_DynamineR_Alone_and_in_Combination_with_TeaCrineR_in_Young_Adults
  55. NuLiv Science; AstraGin Product Dossier; https://docdro.id/rA01t9O
  56. Stamler, Jonathan S., and Gerhard Meissner. “Physiology of Nitric Oxide in Skeletal Muscle.” Physiological Reviews, vol. 81, no. 1, 1 Jan. 2001, pp. 209–237, 10.1152/physrev.2001.81.1.209; https://journals.physiology.org/doi/full/10.1152/physrev.2001.81.1.209
  57. Schwedhelm, Edzard et al.; “Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism.”; British journal of clinical pharmacology vol. 65,1 (2008): 51-9.; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291275/
  58. Archer, S L, et al. “Nitric Oxide and CGMP Cause Vasorelaxation by Activation of a Charybdotoxin-Sensitive K Channel by CGMP-Dependent Protein Kinase.” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 16, 1994, pp. 7583–7, 10.1073/pnas.91.16.7583; https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC44446/
  59. Castillo, L, et al. “Splanchnic Metabolism of Dietary Arginine in Relation to Nitric Oxide Synthesis in Normal Adult Man.” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 1, 1 Jan. 1993, pp. 193–197; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC45626/
  60. Wu, Guoyao. “Intestinal Mucosal Amino Acid Catabolism.” The Journal of Nutrition, vol. 128, no. 8, 1 Aug. 1998, pp. 1249–1252, 10.1093/jn/128.8.1249; https://academic.oup.com/jn/article/128/8/1249/4722724
  61. O’sullivan, D., et al. “Hepatic Zonation of the Catabolism of Arginine and Ornithine in the Perfused Rat Liver.” Biochemical Journal, vol. 330, no. Pt 2, 1 Mar. 1998, p. 627, 10.1042/bj3300627; https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC1219183/
  62. van de Poll, Marcel CG, et al. “Interorgan Amino Acid Exchange in Humans: Consequences for Arginine and Citrulline Metabolism.” The American Journal of Clinical Nutrition, vol. 85, no. 1, 1 Jan. 2007, pp. 167–172, 10.1093/ajcn/85.1.167; https://pubmed.ncbi.nlm.nih.gov/17209193/
  63. Grimble, George K. “Adverse Gastrointestinal Effects of Arginine and Related Amino Acids.” The Journal of Nutrition, vol. 137, no. 6, 1 June 2007, pp. 1693S1701S, 10.1093/jn/137.6.1693s; https://pubmed.ncbi.nlm.nih.gov/17513449/
  64. Kaore, Shilpa N., et al. “Citrulline: Pharmacological Perspectives and Its Role as an Emerging Biomarker in Future.” Fundamental & Clinical Pharmacology, vol. 27, no. 1, 31 July 2012, pp. 35–50, 10.1111/j.1472-8206.2012.01059.x; https://pubmed.ncbi.nlm.nih.gov/23316808/
  65. Giannesini B., et. al.; European Journal of Pharmacology; “Citrulline malate supplementation increases muscle efficiency in rat skeletal muscle;” September 2011; http://www.ncbi.nlm.nih.gov/pubmed/21664351
  66. Perez-Guisado J, Jakeman PM; Journal of Strength and Conditioning; “Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness;” May 2010; http://www.ncbi.nlm.nih.gov/pubmed/20386132
  67. Hickner RC. et. al.; Medicine and Science in Sports and Exercise; “L-citrulline reduces time to exhaustion and insulin response to a graded exercise test;” 2006; http://www.ncbi.nlm.nih.gov/pubmed/16679980
  68. Rhim, Hye Chang, et al. “Effect of Citrulline on Post-Exercise Rating of Perceived Exertion, Muscle Soreness, and Blood Lactate Levels: A Systematic Review and Meta-Analysis.” Journal of Sport and Health Science, Feb. 2020, 10.1016/j.jshs.2020.02.003. https://www.sciencedirect.com/science/article/pii/S2095254620300168
  69. Sureda, Antoni, et al. “L-Citrulline-Malate Influence over Branched Chain Amino Acid Utilization during Exercise.” European Journal of Applied Physiology, vol. 110, no. 2, 25 May 2010, pp. 341–351, 10.1007/s00421-010-1509-4; https://pubmed.ncbi.nlm.nih.gov/20499249/
  70. Legaz, M. et al. Feb. 1983. “Endogenous Inactivators of Arginase, L-Arginine Decarboxylase, and Agmatine Amidinohydrolase in Evernia prunastri Thallus.” Plant Physiology vol. 71,1; 300-2. https://pubmed.ncbi.nlm.nih.gov/16662821
  71. Morrissey J. et al. Jan. 1997. “Agmatine Activation of Nitric Oxide Synthase in Endothelial Cells.” Proceedings of the Association of American Physicians vol. 109,1;51-7. https://pubmed.ncbi.nlm.nih.gov/9010916/
  72. Freitas, Andiara E., et al. “Agmatine, a Potential Novel Therapeutic Strategy for Depression.” European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, vol. 26, no. 12, 1 Dec. 2016, pp. 1885–1899, 10.1016/j.euroneuro.2016.10.013; https://pubmed.ncbi.nlm.nih.gov/27836390/
  73. Lambert, Ian Henry. “Regulation of the Cellular Content of the Organic Osmolyte Taurine in Mammalian Cells.” Neurochemical Research, vol. 29, no. 1, Jan. 2004, pp. 27–63, 10.1023/b:nere.0000010433.08577.96; https://pubmed.ncbi.nlm.nih.gov/14992263/
  74. Jong, Chian Ju, et al. “The Role of Taurine in Mitochondria Health: More than Just an Antioxidant.” Molecules, vol. 26, no. 16, 13 Aug. 2021, p. 4913, 10.3390/molecules26164913; https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8400259/
  75. Waldron, M., et al. May 2018. “The Effects of an Oral Taurine Dose and Supplementation Period on Endurance Exercise Performance in Humans: A Meta-Analysis.” Sports Medicine vol. 48,5; 1247-53. https://pubmed.ncbi.nlm.nih.gov/29546641
  76. Ripps, H. et al. Nov. 2012. “Review: Taurine: A “Very Essential Amino Acid.” Molecular Vision vol. 18. 2673-86. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501277/
  77. Chen, C. et al. Aug. 2019. “Roles of Taurine in Cognitive Function of Physiology, Pathologies, and Toxication.” Life Sciences vol. 15, 231; https://pubmed.ncbi.nlm.nih.gov/31220527/
  78. Guizoni, D. et al. Jan. 2020. “Modulation of Endothelium-Derived Nitric Oxide Production and Activity by Taurine and Taurine-Conjugated Bile Acids.” Nitric Oxide vol. 94,1; 48-53; https://www.sciencedirect.com/science/article/abs/pii/S1089860319302113
  79. Gur, Serap & Kadowitz, Philip & Serefoglu, Ege & Hellstrom, Wayne. (2012). PDE5 Inhibitor Treatment Options for Urologic and Non-Urologic Indications: 2012 Update. Current pharmaceutical design. 18. 10.2174/138161212803307554. https://www.researchgate.net/publication/228099158_PDE5_Inhibitor_Treatment_Options_for_Urologic_and_Non-Urologic_Indications_2012_Update
  80. Fekete ÁA, Givens DI, Lovegrove JA; “Casein-Derived Lactotripeptides Reduce Systolic and Diastolic Blood Pressure in a Meta-Analysis of Randomised Clinical Trials.”; Nutrients; 2015; 7(1):659-681; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303860/
  81. Hirota, Tatsuhiko, et al. “Casein Hydrolysate Containing the Antihypertensive Tripeptides Val-Pro-pro and Ile-Pro-pro Improves Vascular Endothelial Function Independent of Blood Pressure-Lowering Effects: Contribution of the Inhibitory Action of Angiotensin-Converting Enzyme.” Hypertension Research, vol. 30, no. 6, 2007, pp. 489–496, 10.1291/hypres.30.489; https://pubmed.ncbi.nlm.nih.gov/17664851/
  82. Sowers, James R. “Hypertension, Angiotensin II, and Oxidative Stress.” The New England Journal of Medicine, vol. 346, no. 25, 20 June 2002, pp. 1999–2001, 10.1056/NEJMe020054; https://pubmed.ncbi.nlm.nih.gov/12075063/
  83. Li, Zhaojin, et al. “Angiotensin Converting Enzyme (ACE) Inhibition Reverses Vasoconstriction and Impaired Dilation of Pial Collaterals in Chronic Hypertension.” Hypertension (Dallas, Tex. : 1979), vol. 76, no. 1, 1 July 2020, p. 226, 10.1161/HYPERTENSIONAHA.119.14315; https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC7289681/
  84. NuLiv Science; AstraGin Product Dossier; https://docdro.id/rA01t9O